Pyrolytic Eliminations with NN-Dichloroalkylamines

By JOHN T. ROBERTS and PETER KOVACIC*

(Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201)

John A. Tonnis

(Department of Chemistry, University of Wisconsin-La Crosse, La Crosse, Wisconsin 53601)

and FRANCIS V. SCALZI

(Department of Chemistry, Hiram College, Hiram, Ohio 44234)

Summary NN-Dichloroalkylamines (RNCl₂) undergo thermal decomposition in gas chromatography at 215—260 °C giving products in high yield: alkenes from tertiary R groups, alkenes and N-chloroimines, from secondary, and nitriles predominantly, with a minor amount of alkenes, from primary.

THE pyrolysis of many organic compounds containing various functional groups has been investigated.¹⁻³ We report the first examples of thermal decomposition, in gas chromatography, of simple NN-dichloroalkylamines. The reactions proceed during short times and at relatively low temperatures, 215—260 °C; the minimum possible temperature has not yet been ascertained. The type of product formed depends upon the R group in RNCl₂: alkene from tertiary; alkene and N-chloroimine from secondary; and nitrile predominantly, with a minor amount of alkene, from primary. In all cases, the total yields of organic products were high (>90%) (Table); inorganic byproducts were not determined.

The effect of structural variation was further studied with phenyl substituted compounds on a Dow Corning 710

(20% Chromosorb P) column; column temp., 210 °C; injector port temp., 240 °C; detector temp., 245 °C; He flow rate, 24 ml min⁻¹, 2·25 mmol RNCl₂ in CH₂Cl₂. For

TABLE. Pyrolysis products from NN-dichloroalkylamines^a

RNCl ₂ b	Products ^c (% yield)	
l-Methyl-NN-dichloro- cyclohexylamine	{ 1-Methylcyclohexene { Methylenecyclo-	(ca. 80)
- 5 5	hexane	(ca. 20)
NN-Dichlorocyclohexyl- amine	Cyclohexene Chloroiminocyclo- hexane	(ca. 48)
amme	[hexane	(1) (ca. 52)
NN-Dichlorohexylamine	{Hex-1-ene Hexanenitrile	(7) (88)

^a Copper column, 6 ft by $\frac{1}{2}$ in; 15% SE-30 on Chromosorb W; injection temp. 260 °C; column temp., 70 °C; He flow rate, 150 ml min⁻¹; injected neat. ^b Prepared according to P. Kovacic and S. S. Chaudhary, *Org. Synth.*, 1968, **48**, **4**. ^c Identified by comparison of g.l.c. retention times and mass spectra with those of authentic materials: Aldrich Chemical Co.; (1) G. H. Alt and W. S. Knowles, *Org. Synth.*, 1975, Col. Vol. V, 208.

PhCMe₂NCl₂, the yield of α -methylstyrene was *ca*. 60%. No alkene (PhCH=CMe₂ or PhCH₂CMe=CH₂) was detected

in the case of PhCH₂CMe₂NCl₂. Higher temperatures might be required for the best results with these substrates of higher molecular weight. Also, intramolecular, nuclear chlorination⁴ may be a competing process, as depicted in (2).

In a consideration of the reaction pathway for 1,2elimination leading to N-chloroimine or nitrile, a comparison can be made with the pyrolysis of alkyl chlorides.^{1,2} With thermal dehydrohalogenation, carried out at appreciably higher temperatures (usually 300-500 °C), decomposition can be a complex process following various routes. In the unimolecular reaction for RCl, most of the results can be rationalized on the basis of a highly polar transition state, or an ion pair, which yields the product directly. A closer analogy is provided by comparison with gem-dihalides. Studies with 1,1-dichloroethane⁵ (365-453 °C) and 1,1-dichloropropane⁶ (425 °C) demonstrated that the reaction was limited essentially to elimination of one mole of hydrogen chloride, with negligible quantities of alkyne being produced. Furthermore, acetylene was generated⁵ in ${<}10\%$ yield from vinyl chloride at 444 °C for 14 min. Hence, it is evident that N-chloroimines undergo dehydrohalogenation with much greater facility than vinyl chlorides. The following results for loss of HCl from alkyl chlorides also show that this reaction is slow: 24% HCl loss for ethyl chloride after 57 min at 438 °C, and 47% for 1,1-dichloroethane after 10 min at 444 °C.5 For NN-dichloroamines

the low bond energy of N-Cl (47.7 kcal mol⁻¹)⁷ compared with C-Cl (78.5 kcal mol⁻¹) is probably important in leading to a ready reaction under mild conditions.

Alkene formation may be viewed mechanistically in several ways. There is a resemblance in some respects to thermolysis (90-105 °C) of ButSO₂Cl which yields isobutene, t-butyl chloride, sulphur dioxide, and hydrogen chloride.⁸ The most plausible pathways entailed a cyclic, intramolecular transition state or a heterogeneous, nonchain process. A principal difference is the fact that effectively no t-RCl was obtained from t-RNCl₂. A cyclic transition state for the thermolyses reported here would lead to the pathway in equation (1). Recent work supports

$$H^{\bullet C} = C = C + HCI + NCI \quad (1)$$

the view that a number of gas-phase processes are actually surface-catalysed, involving stabilization of charge separation in the transition state.9

If the NCl, group behaves as a pseudohalogen,¹⁰ then generation of alkene might also occur by 1,2-elimination.

The processes (alkene, N-chloroimine, and nitrile formation) which are described herein for RNCl₂ have counterparts in liquid-phase systems.4,10 Under thermal conditions, certain NN-dichloroamines, e.g. perfluoroalkyl¹¹ and arvl,¹² are reported to provide azo compounds.

We thank Paul Karges for mass spectral data and Peter Donndelinger for assistance with a part of the experimental work.

(Received, 4th April 1977; Com. 323.)

¹G. G. Smith and F. W. Kelly, 'Progress in Physical Organic Chemistry,' Eds. A. Streitwieser, Jr. and R. W. Taft, Vol. 8, Wiley Interscience, New York, 1971, p. 75.

- ² A. Maccoll, 'The Chemistry of Alkenes,' Ed. S. Patai, Interscience, New York, 1964, p. 203.
- ³ C. H. DePuy and R. W. King, Chem. Rev., 1960, 60, 431.
- P. Kovacic, M. K. Lowery, and K. W. Field, *Chem. Rev.*, 1970, 70, 639.
 D. H. R. Barton and K. E. Howlett, *J. Chem. Soc.*, 1949, 165.

- ⁶ K. E. Howlett, J. Chem. Soc., 1953, 945.
 ⁷ L. Pauling, 'The Nature of the Chemical Bond,' Cornell University Press, Ithaca, New York, 1960, p. 85.
 ⁸ R. J. Van Aller, R. B. Scott, Jr., and E. L. Brockelbank, J. Org. Chem., 1966, 31, 2357.
- ⁹ D. H. Wertz and N. L. Allinger, J. Org. Chem., 1977, 42, 698.
 ¹⁰ J. A. Tonnis, P. Donndelinger, C. K. Daniels, and P. Kovacic, J.C.S. Chem. Comm., 1975, 560.
- H. B. Hynes and T. E. Austin, *Inorg. Chem.*, 1966, 5, 488.
 R. E. Banks and T. J. Noakes, *J.C.S. Perkin I*, 1976, 143.